
About Lab 9

In Part 1 of Lab 9 you will create two classes. One
is class Book, which looks like this:

class Book:
def __init__(self, author, title, date=0):

def setDates(self, d):

def __str__(self):

def __lt__(self, other):

Class Library is

class Library:
def __init__(self):

def addBook(self, b):

def Sort(self):

def Print(self):

Finally, you need to write a main() function that
creates a new library, adds some specific books to it,
then sorts and prints the library:

def main():
L = Library()
L.addBook(Book("Heller", "Catch-22", 1962))
....
L.Sort()
....

In Part 2 of Lab 9 you will create a Soundwave class
in file soundwave.py, test it out by running a few
programs that import and use your Soundwave
class, and then write 2 programs on your own that
use it:

scale.py This asks the user for a tonic note
(as a number of steps above or
below middle C) and a mode
(major, minor, blues), and then
plays the indicated scale

mozart.py This creates a composition from
a randomization algorithm that
Mozart himself wrote.

The Soundwave constructor looks like this:

def __init__(self, halftones=0, duration=0.0, amp=1.0, samplerate=44100):

People seem to find the halftones argument
confusing; it is the number of steps this note is above
or below middle C.

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

A A# B C C# D D# E F F# G G# A A#

offset

note name

The body of the constructor does nothing except
build up a list self.samples by evaluating a sine
function for every value of t in the range from 0 to
int(duration*samplerate)

Even if you loathed Trigonometry in high school
you can do this; it is just a matter of calling
math.sin() with the argument given to you in the
lab directions.

The Soundwave class has 3 additional methods:

The play method is just
def play(self):

audio.play(self.samples)

There are two methods for combining
Soundwaves: concat and plus. Concat is used
when you want to play one sound, then follow it
with another. Plus is used when you want to play
two sounds simultaneously.

The concat method is

def concat(self, s2)

where s2 is another Soundwave objects. This just
adds s2's samples onto the end of self's samples.
So if S1 and S2 are soundwave objects

S1.concat(S2)
modifies S1 to be longer.

The plus method is

def plus(self, s2)

This adds together the individual samples of self
and s2, and returns a new Soundwave object with
the resulting sample list. The only thing tricky
about this is handling the fact that self.samples and
s2.samples might have different lengths. You want
to sum until the shorter list runs out, then tack on
the extra elements of the longer list.

For example, if one Soundwave had samples
[2, 3, 5, 7]

and the other had
[1, 2, 3, 4, 5, 6]

you would want the result to have samples
[3, 5, 8, 11, 5, 6]

Before you start coding this think of the algorithm
you will use. There are several ways to think about
it, just find one and be sure it works on paper
before you code it.

For the scale.py program you should have a loop
that asks the user for a mode, with possible
responses "major", "minor", "blues", and "quit".
If the response is "quit" just exit the loop and the
program. For the other three responses ask for
the starting note of the scale, as an offset from
middle C. In other words the starting or tonic
node is a number: 0 for middle C, 1 for C#, 2 for D
etc. You should then create a Soundwave object
that creates and plays this scale.

If variable offset holds the starting note, we can
make a Soundwave that represents a half-second
tone at that pitch with

S = soundwave.Soundwave(offset, 0.5)

For the rest of the notes, walk through the
appropriate Intervals list, computing the offsets
and concatenating the corresponding Soundwave
objects onto S.

For example, suppose we want a D-major scale.
This starts with tonic note D, which has an offset
of 2. The major intervals are [2,2,1,2,2,2,1]. The
notes in the D-major scale have offsets

2 (the tonic note - D)
2+2 = 4 (E)
4+2 = 6 (F#)
6+1 = 7 (G)
7+2 = 9 (A)
9+2 = 11 (B)
11+2 = 13 (C#)
13+1 = 14 (D)

Your program asks the user for a mode and an initial
offset. If those are "major" and 2 you will do the
following:

S = soundwave.Soundwave()
S.concat(soundwave.Soundwave(2, 0.5)
S.concat(soundwave.Soundwave(4, 0.5)

etc. (running through the major intervals)
S.play()

For the mozart.py program you have an algorithm
for constructing a minuet and trio based on
measures written by Mozart. The measures are in
.wav files with names like M32, T41, and so forth.
The algorithm is easy, but it is based on having the
correct numbers in two large two-dimensional
tables. We give you those tables in two files, so the
first step of your program is to read the files into
the tables.

Both tables should be divided into rows with 16
entries in each row. The text files we give you have
the numbers in one long sequence, separated by
spaces.

You need the individual numbers in the file. You
can do this by opening the file into variable F,
reading F into a string s, and splitting s into the
individual fields,

or by using our usual
for line in F:

nums = line.split()

Once you know how to get the elements of the file,
do the following:

Table = []
row = []
numInRow = 0
for every number in the file:

append the number to row
add one to numInRow
if numInRow is 16:

append row onto Table
row = []
numInRow = 0

Note that you don't need to evaluate the numbers
you get out of the table -- you can leave them as
strings. We will use them as part of a file name. If
you get the number "42" out of the Minuet file, the
next measure of your composition is

soundwave.Soundwave("../Mfiles/M42.wav")

Once you have built the tables, the actual algorithm
is easy. For the minuet, you need 16 measures, so
16 times you generate a random number between 0
and 10. Suppose the number you get for measure 3
is 7. The minuet table entry for row 7, column 3 is
"50". Then you will concatenate onto your minuet
the file "../Mfiles/M50.wav" You do the same thing
for the trio, but your trio table has only 6 rows so
you choose a random number between 0 and 5.
Finally, you concatenate your minuet again onto the
composition (so save the minuet in a variable when
you generate it).

